Cyanide (CN) is a highly reactive compound whose salts are used in various applications: chemical synthesis, laboratory analysis, processing of metals. Natural sources of CN can be found in apricot kernel and many other plants. CN may also be produced by human metabolism of aliphatic nitriles used in the plastic manufacture and adhesives industry. Hydrogen cyanide (HCN) is a gas easily generated by reaction of cyanide salts with an acid. The most frequent cause of CN poisoning is represented by exposure to fire smoke, since HCN is a common product of burning plastic, wool and other natural or synthetic materials.

Toxic mechanisms
CN is easily absorbed into human tissues and might have multiple toxic mechanisms. The best established and probably the most important toxic action is incapacitation of the cell’s mechanism for using oxygen by binding to mitochondrial Cytochrome oxidase AA3 of the mitochondrial respiratory chain and causing blocking aerobic oxygen utilization. CN is metabolized by the enzyme rhodanese into a less toxic compound thiocyanate, which is slowly excreted in the urine. Inhalation exposure to HCN levels of 150-200 ppm may already be rapidly fatal.

Clinical features, diagnosis and antidotal therapy
The rapid (seconds to minutes) onset of severe toxic effects is the hallmark of inhaled HCN intoxication. A late onset (minutes to hours) is possible when nitriles, amygdalin or vegetables containing cyano-genic glycosides are ingested. The initial clinical features are characterized by headache, nausea, disnoea and mental confusion. After a significant exposure may appear loss of consciousness, general seizures, coma, shock and cardiac arrest. Fire smoke inhalation may be characterized by either CN and carbon monoxide exposure, and clinical picture may be associated also to severe pneumonia and burns.

After acute fire smoke inhalation bronchial obstruction and pulmonary edema can occur also after the first 24-36 hours after exposure; asymptomatic patients acutely exposed to fire should be kept under close observation for at least 24 hours before discharge. Hallmark laboratory findings in acute CN poisoning are characterized by: metabolic acidosis with markedly elevated plasma lactate, elevated anion gap, excessive venous oxygenation and arteriovenous oxygen saturation difference decreased due to blockage of cellular oxygen consumption. Blood CN concentrations are theoretically crucial but currently have only a confirmatory role in the diagnosis of acute CN poisoning; they are rarely useful in an emergency setting because are not normally available within the time required to initiate intervention. Initial supportive care may be essential to manage CN poisoning. However antidotal therapy can be considered decisive to treat severe poisoning and include oxygen administration, intravenous hydroxocobalamin, intravenous sodium thiosulfate and, for prehospital use in fire victims, inhaled amyl nitrite. In the United States, where hydroxocobalamin is only recently available, is also included sodium nitrite.

References

Management of severe acute cyanide poisoned patients: a single-center experience

L. Coentrão
Institute of Pharmacology and Therapeutics - Nephrology Research and Development Unit
Faculty of Medicine, University of Porto, Hospital S. João, Porto, Portugal

Cyanide inhibits oxidative phosphorylation and causes central nervous system and cardiovascular dysfunction by cellular hypoxia. Cyanide poisoning has a rapidly progressive nature, arising from numerous sources including industrial accidents, food, pharmaceuticals, and fire smoke. The most common form of cyanide poisoning occurs by smoke inhalation, whereas less clinical information is available from cyanide poisoning by ingestion. Lactic acidosis is a recognized hallmark of acute cyanide poisoning in humans. However, clinical manifestations of acute cyanide poisoning are nonspecific, thereby making diagnosis difficult. Herein, we report the cases of acute cyanide poisoning by ingestion in our Hospital center, emphasizing the source of exposure and the importance of metabolic acidosis in the assessment of the severity of this intoxication. A retrospective chart review of all admissions for acute cyanide poisoning by ingestion for the years 1988 to 2008 was conducted in our institution. Of the nine patients admitted to the hospital during the study period, eight attempted suicide by ingestion of potassium cyanide used in their profession as goldsmiths or textile industry workers. Five patients had severe neurologic impairment and severe metabolic acidosis (pH 7.02 ± 0.08, mean ± SD) with high anion gap (23 ± 4 mmol/L, mean ± SD). On the other hand, patients admitted in the emergency department without neurologic dysfunction presented with normal acid-base parameters. Of the five severely intoxicated patients, three received antidote therapy (sodium thiosulfate or hydroxocobalamin) and resumed full consciousness in less than 8 hours. The remaining two patients with severe poisoning were managed without antidote treatment and were hospitalized in intensive care unit for at least 72 hours, requiring ventilator and cardiovascular support. All patients survived without major sequelae. Cyanide intoxication by ingestion in our patients was mainly suicidal and occurred in specific jobs where potassium cyanide is used. Our data suggest that acid-base disturbances may help physicians to ascertain the severity and prognosis of cyanide overdose and that sodium thiosulfate and hydroxocobalamin are both safe and effective cyanide antidotes.
Il legame del monossido di carbonio (CO) con emoglobine è reso particolarmente stabile dalla barriera energetica che il gas deve superare per il distacco dal gruppo eme. Questo rappresenta il limite maggiore ad una efficace e veloce dissociazione del CO, anche in presenza di elevate concentrazioni di ossigeno. In quest’ultimo lavoro proponiamo una rassegna delle proprietà di legame dell’ossigeno e del monossido di carbonio alle emoglobine umane, alla luce della fotosensibilità dei complessi ossi-emoglobina e carbossi-emoglobina. Mediante esposizione a luce visibile di carbossi-od ossi-emoglobine è possibile ottenere le loro forme deossi-, superando così l’elevata barriera energetica che normalmente sfavorisce la dissociazione delle forme legate. Tuttavia, mentre il legame dell’ossigeno molecolare con deossi-emoglobina è caratterizzato da una costante di equilibrio più bassa di quella del monossido di carbonio, la costante di velocità di legame dell’ossigeno è più elevata. Questo suggerisce che, a parità di concentrazione, l’ossigeno prevarrà dal punto di vista cinetico nel legame alla deossi-emoglobina. L’uso di illuminazione in presenza di ossigeno potrebbe in prospettiva consentire lo sviluppo di una metodologia per il trattamento di pazienti intossicati da monossido di carbonio. La penetrazione della luce visibile nei tessuti è limitata ai primi strati superficiali e si ritiene che tale trattamento si rivelerà efficace soprattutto sui tessuti esterni. Tuttavia, si attende che il gradiente di concentrazione limitato, le tensioni geopolitiche e le trame terroristiche indotto dall’emissione di radiazioni ionizzanti nei numerosi campi in cui queste trovano giustificato motivo di utilizzo, si manifestino come un rischio worsening con il tempo.

Il rischio RN: è un problema anche italiano

G. Trenta
Presidente dell’Associazione Italiana di Radioprotezione Medica (AIRM)

I sostenitori dell’abbandono dell’energia nucleare nel nostro Paese, ritenevano che con la chiusura delle centrali fosse eliminato il rischio radiologico e nucleare. Questo rischio probabilmente non sarebbe mai stato, tenendo conto della limitata vita delle centrali stesse, di mezzi, strumenti e procedure necessarie per fronteggiare tali situazioni.

Il rischio RN può invece derivare dalle attività nucleari nei paesi più o meno vicini (nei quali gli standard di sicurezza sono di limitata efficacia) o dall’impiego delle radiazioni ionizzanti nei numerosi campi in cui queste trovano giustificato motivo di utilizzo.

Il rischio RN può invece derivare dalle attività nucleari nei paesi più o meno vicini (nei quali gli standard di sicurezza sono di limitata efficacia) o dall’impiego delle radiazioni ionizzanti nei numerosi campi in cui queste trovano giustificato motivo di utilizzo, ma soprattutto dalle velate minacce che, anche se con frequenza limitata, le tensioni geopolitiche e le trame terroristiche, che possono essere finite drasticamente o subdolamente, restano un pericolo che non va sottovalutato.

Se poi l’Italia dovesse mantenere il proposito di ritornare al nucleare, sarebbe necessario che il paese, se non con una struttura che assicurasse un limite maggiore, garantendo, in caso di massimo incidente di progetto, il non coinvolgimento della popolazione. Ogni momento di reattori “dismessi” e gli ipotetici futuri da realizzare energetiche).

Fotosensibilità dei complessi del monossido di carbonio con emoglobine: prospettive terapeutiche per intossicati da monossido di carbonio

C. Viappiani¹, S. Abbruzzetti¹, G. Vezzani²
¹ Dipartimento di Fisica - Università degli Studi di Parma, NEST, Istituto Nanoscienze-CNR, Italy
² Ospedale di Fidenza-Vaio, AUSL Parma

sizione esterna. La rete dovevrebbe costituire un sistema integrato in grado di fornire agli organismi di prevenzione e per i loro tramite al Paese, tutto il supporto tecnico-scientifico necessario ad una più
efficace gestione delle emergenze radiologiche e nucleari per la valutazione della dose in vista di azioni profilattiche e di successive valutazioni cliniche e terapeutiche.

Pianificazione degli interventi su ipotesi di incidente: l’esempio del reattore di Pavia

A. Salvini, A. Borio di Tigliole, S. Manera

Laboratorio Energetica Nucleare Applicata (L.E.N.A), Università di Pavia

Presso il Centro Servizi Interdipartimentale “Laboratorio Energetica Nucleare Applicata” (LENA) dell’Università degli Studi di Pavia è installato un reattore nucleare di ricerca con potenza in regime stazioneario di 250 kW denominato TRIGA MKII e prodotto dalla General Atomic. Le caratteristiche dell’impianto collocano la licenza di esercizio nel capo VII – Impianti del D.Lgs 230/95 e succ. mod. che prevede la pianificazione del piano di emergenza come da art. 115 capo X - interventi. La documentazione di riferimento utilizzata per la stesura del piano di emergenza LENA e per la sua applicazione sono, oltre la legge già citata e tenendo conto anche degli allegati XII e VI, le linee guida nazionali ed internazionali pubblicate da ICRP, NCRP IAEA, NEA e per l’Italia CEVaD (ANPA - MICA). Ad esempio di particolare rilevanza sono la pubblicazione CEVaD “Emergenze nucleari e radiologiche” e la pubblicazione ICRP 40 “Protection of the Public in the Event of Major Radiation Accidents. Principles of Planning”. Nella pianificazione dell’emergenza si individuano le azioni protettive e i mezzi per attuarle e si identifica le responsabilità delle diverse amministrazioni che concorrono nell’emergenza e chi ne coordina l’intervento. La predisposizione del Piano di Emergenza Esterna è coordinata dalla Prefettura competente e dalla stessa è emanato con decreto l’incidente di riferimento e la perdita di liquido refrigerante con la fessurazione di un elemento di combustibile ed il rilascio dei prodotti di fisione gassosi all’esterno dell’edificio. Questo scenario porta alla considerazione di diverse contromisure fra cui il riparo al chiuso e la iodoprofilassi. La decisione per l’adozione delle contromisure è presa dal centro coordinamento soccorsi presieduto dal Prefetto una volta ottenute le indicazioni fornite dal comitato di emergenza dell’impianto a fronte di misure eseguite in campo durante l’evento incidentale. Il piano di emergenza contiene le curve di dose efficace e di dose equivalente all’organo critico (tiroide) per lavoratori e per il gruppo di riferimento della popolazione, nonché i livelli derivati di riferimento per l’adozione delle misure protettive. La legge a sua volta indica nell’allegato XII i livelli di intervento nel caso di emergenze radiologiche e nucleari per le varie misure protettive. L’isotopo guida per l’emergenza nucleare del LENA è lo I-131 con stimato un rilascio massimo credibile di 4.07 x 10¹⁰ Bq (1.1 Ci) in modo impulsivo e per un tempo massimo di 8 ore. Non si raggiungono le soglie per l’adozione di contromisure da ICRP per gli adulti (Dose - individuo) in nessuna previsione; si raggiunge la prima soglia per “ricovero al chiuso e iodoprofilassi” per una parte della popolazione (bambini fino a 7 anni) in un raggio di circa 200 metri dal LENA.

Procedure per l’identificazione e la decontaminazione dei pazienti nei DEA

A. Muni¹, D. Valentini², I. Casagrandod, M. Desperati³, O. Testori¹

¹ Nuclear Medicine Unit, Department of Radiology, SS Antonio e Biagio Hospital of Alessandria
² Health Physics Unit, SS Antonio e Biagio Hospital of Alessandria
³ Emergency Department, SS Antonio e Biagio Hospital of Alessandria
⁴ Health Department, SS Antonio e Biagio Hospital of Alessandria

Nei piani di emergenza nucleare e radiologico (NR) un ruolo di primo piano spetta al nucleo provinciale NBCR “Vigili del Fuoco” (VVF) ed al soccorso extraospedaliero (servizio 118). Solo ad avvenuta decontaminazione, controllata e monitorata dal nucleo provinciale NBCR “Vigili del Fuoco” (VVF); le vittime vengono avviate alla successiva valutazione e trattamento sanitario nel posto medico avanzato allestito in “area fredda” non contaminata e successivamente ospedalizzate. In seguito ad un’emergenza NR giungono in DEA tutte quelle persone che accorrono autonomamente prima dell’arrivo sul campo dei soccorsi perché ferite o potenzialmente contaminate, in seguito giungono i feriti coinvolti nell’evento, contaminati o no, trasportati dalle ambulanze del 118. A livello ospedaliero manca un riferimento normativo specifico per la gestione di questo tipo di emergenze, tuttavia è possibile di segnare per alcuni ospedali un percorso per il paziente contaminato che tenga conto delle risorse presenti all’interno della struttura, alla devoluta e integrativamente le procedure previste all’interno del proprio piano di emergenza interna per massicci alluosi di feriti (PE.I.M.A.F) con le indicazioni proprie delle emergenze NR, difatti l’approccio metodologico all’emergenza NR, pur con le proprie specificità, non è diverso da quello che si impiega in altre evenienze che comportino un elevato numero di persone coinvolte.

I requisiti che consentono agli ospedali di assistere persone irradiate o contaminate da sostanze radioattive sono:

- possedere un’area di triage nell’ambito del DEA, che consenta di garantire il contenimento della contaminazione collegata alle vittime, distinta da quella rivolta ai feriti convenzionali non contaminati;
- possedere camere di degenza protetta come quelle abitualmente usate in Medicina Nucleare per la terapia radiometa-bolica;
- presenza in ospedale di un’equipe di emergenza radiologica, addestrata alla gestione del paziente contaminato da materiale radioattivo, costituita da un medico dell’emergenza, un medico nucleare, un fisico sanitario, due infermieri di area critica, un tecnico di radiologia medica, due infermieri genicrci;
- disporre di Dispositivi di Protezione Individuale (DP1) per il personale gestore dell’emergenza NR, di materiale di decontaminazione e di strumentazione di misura adeguata.

Giunti in DEA le vittime di un’emergenza NR sono raggruppate...
in 4 categories to second of the extension and the nature of the lesions reported.

- Group 1: patients with high probability of surviving a condition of receiving a rapid treatment. The time period may be longer than the dose (A);
- Group 2: patients that need intervention of surgical type within the first 1-3 days. The oral administration should be performed as early as possible and the dose should be related to patient age (B);
- Group 3: patients that have already received doses of radiation and are in need of assistive treatment (C);
- Group 4: patients with lesions requiring treatment (D).

The patients of Groups (A) and (D) that receive a treatment immediately before the removal of the radioactive agent or accelerating the radionuclide elimination. This may act by blocking the cell uptake of radionuclide, determining the insoluble form has been used in 1987 (Goiania, Brazil) to treat patients contaminated with 137Cesium (Cs). Both experimental and clinical data support its effectiveness. Prussian Blue decrease body’s exposure to radiation by reducing the biological half-life of Cs and thallium from 110 to 30 and 8 to 3 days respectively. The dose to administer depends on age, weight and the estimated amount of radioactive contamination. There are no reported major adverse effects from the use of insoluble Prussian blue (FDA approved); only minor effects are described (abdominal pain and constipation). In addition it is not absorbed through the gastrointestinal tract and it may also be administered during pregnancy Zinc-DTPA should be preferred. During chelating therapy patients should be monitored for potential zinc and magnesium depletion.

Substances of Abuse and Chemical Emergencies

Antidoto per il rischio RN: la nuova dotazione della Scorta Nazionale Antidoti

Antidote for radiological-nuclear risk in the Italian National Antidote Stockpile

D. Lonati, V. Petrolini, E. Buscaglia, M. Mazzoleni, C. Locatelli

Poison Control Center and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia

Emergencies involving radioactive substances regularly present to the attention of public opinion and authorities. The dispersal of radioactive materials (e.g. direct radiation of people, food chain, people or environment contamination through radioactive materials) following chemical accident or terrorist attacks may constitute a real public health emergency. Terrorist attacks with radioactive materials may be performed through several ways such as dirty bomb, waterworks and food chain contamination or nuclear power station attack. The risk of “nuclear” or “radioactive” event, even if it is considered unlikely, may result in great public concern with deductible consequences on the political policy and society. When a “radioactive event occurs, in addition to all procedures that have to be performed on site (measure of radioactivity, decontamination procedures, etc.), specific antidotes may be needed. Specific antidotes may act by blocking the cell uptake of radionuclide, determining an isotopic dilution or the insolubility of the compound, chelating the radioactive agent or accelerating the radionuclide elimination. In addition to some antidotes already presented in the Italian National Antidote Stockpile, Prussian Blue, Ca-DTPA, DMPS and potassium iodide have been identified. Prussian Blue: the insoluble form has been used in 1987 (Goiania, Brazil) to treat patients contaminated with 137Cesium (Cs). Both experimental and clinical data support its effectiveness. Prussian Blue decrease body’s exposure to radiation by reducing the biological half-life of Cs and thallium from 110 to 30 and 8 to 3 days respectively. The dose to administer depends on age, weight and the estimated amount of radioactive contamination. There are no reported major adverse effects from the use of insoluble Prussian blue (FDA approved); only minor effects are described (abdominal pain and constipation). In addition it is not absorbed through the gastrointestinal tract and it may also be administered during pregnancy. Cal/Zn DTPA: both Calcium-DTPA and Zinc-DTPA are approved by the FDA primarily for the treatment of Plutonium and Americium internal contamination. Both drugs are also administered for Curium, Californium and Thorium internal contamination. Cal/Zn-DTPA is a chelating agent and is intravenously administered. The efficacy of treatment is greater when administered during pregnancy. During pregnancy Zinc-DTPA should be preferred. During chelating therapy patients should be monitored for potential zinc and magnesium depletion. Potassium iodide acts by blocking the Iodine and Tellurium uptake from thyroid gland. The oral administration should be performed as early as possible and the dose should be related to patient age (130 mg/day in adults, 65 mg/day in children, 32.5 mg/day from 1 month to 3 years 16.5 mg/day from neonates birth to 1 month). DMPS is routinely used in clinical practice as chelating agent of heavy metals (e.g. mercury, arsenic). DMPS presents some advantages when compared with other available chelating agents (e.g. BAL, DMSA) such as (i) the availability of both oral and intravenous formulation, (ii) the increased effectiveness and (iii) the fewer side effects. In the nuclear and radiological emergencies clinical experiences are very limited and until now DMPS has been used for Polonium and Cobalt.
Objective: To evaluate the outcome of α-amanitin-poisoned patients treated with N-acetylcysteine (NAC), forced diuresis (FD) and activated charcoal gastrointestinal dialysis (GD) (Pavia protocol) apart from general supportive care.

Methods: Retrospective evaluation of confirmed cases of α-amanitin poisoning observed from January-2002 to November-2009. Inclusion criteria were (i) positive history for mushroom consumption, (ii) laboratory confirmation of α-amanitin toxic levels (>10 ng/ml RIA, >1.5 ng/ml EMIT), (iii) treatment with the Pavia protocol including NAC (intravenous 150 mg/Kg followed by 300 mg/kg/day until 48 hours after mushroom ingestion in patients without hepatitis and as long as AST<200 UI/L in patients with hepatic damage), FD until negative urinary α-amanitin levels, and GD (activated charcoal 2-5 g/h until 96 hours). Hepatic damage was defined using the acme of ALT during hospitalization: negative (ALT<49 UI/L), mild (ALT 50-199 UI/L), moderate (ALT 200-2999 UI/L), severe (ALT>2000 UI/L). Outcome was evaluated as fully recovered, organ transplantation, death, and glycemic control. Three fatal cases and 1 case of liver transplantation were registered: the overall mortality rate (considering the transplantation a failure of medical treatment) is 2.5% (4/157).

Results: 157 patients were included. At first evaluation 119/157 (75.8%) patients showed normal hepatic function (group-1) while 15/157 (age 51.9±18.5) were included. Among group-1, 59/119 (49.6%) cases did not develop hepatic damage; 15/119 (12.6%), 24/119 (20.2%) and 21/119 (17.6%) patients developed mild, moderate and severe hepatic damage, respectively. In group-2, 7/15 (46.6%) patients remained with mild, 3/15 (20%) and 5/15 (33%) developed moderate and severe hepatic damage, respectively. In group-3, 7/17 (41.2%) patients remained with moderate and 10/17 (5.9%) developed severe hepatic damage. The 48.3% (73/151) of the patients did not worsen after the treatment was started. NAC treatment was started from 12 to 168 hours after mushroom ingestion and was performed for 2-21 days: no adverse effects were registered. Three fatal cases and 1 case of liver transplantation were registered: the overall mortality rate is lower than in published case series in which NAC was not used [1]. References 1. Ganzert M, et al. Amanita poisoning-comparison of silibinin with a combination of silybin and penicillin. Disch Med Wochenschr 2008;133:2261-2267.

Metformin poisoning: clinical and experimental evidences

S. Vecchio1, A. Protti2

1 Centro Nazionale di Informazione Tossicologica – Centro Antiveleni, IRCCS Fondazione Salvatore Maugeri, Pavia

2 Istituto di Anestesiologia, Terapia Intensiva e Scienze Dermatologiche, Università degli Studi di Milano

Metformin is currently the first-line drug of choice for the treatment of adults with type 2 diabetes [1]. Several clinical trials have shown that metformin is a safe drug, when correctly used. In particular, in properly selected patients, it doesn’t seem to increase the risk of lactic acidosis, a well known side effect of other biguanide compounds [2]. Real life, however, can be quite different from research settings and lactic acidosis has been repeatedly observed even during metformin use. Around one quarter of patients on metformin suffer from primary contraindications to therapy [2], that may explain per se the occurrence of such a complication. Alternatively, lactic acidosis may develop in patients taking metformin when hypoxia, tissue hypoperfusion or liver failure occur, independently of drug use. When metformin use is suspected to be coincidental rather than causative, the most probable diagnosis is metformin-associated lactic acidosis (MALA). Conversely, when lactic acidosis develop in the absence of any other risk factors, then metformin accumulation may be the primary responsible of the rise in blood lactate levels, and not just an incidental finding (metformin-induced lactic acidosis or MILA) [4].

Aside from cases of voluntary overdose, metformin accumulation is usually accidental and occurs when the drug is regularly taken (at therapeutic dose) despite an impaired renal elimination. Once absorbed from the intestinal tract, metformin does not undergo any metabolism and is both filtered and actively excreted by the kidney. Renal dysfunction is virtually present in all the cases of unintentional metformin accumulation and it is usually attributed to dehydration secondary to a few days history of nausea, vomits and diarrhea [5]. Whether these symptoms depend on an initial metformin accumulation or other illness remains unclear. To reduce the likelihood of the development of lactic acidosis, the product labeling for metformin identifies the clinical conditions or patient characteristics that increase the risk of lactic acidosis: diabetic ketoacidosis or diabetic precoma; renal failure or dysfunction (with creatinine clearance < 60 ml/min); presence of any acute condition associated with alteration of renal function (dehydrating, sepsis, shock, intravenous injection of contrast medium); tissue hypoxia induced by heart or respiratory failure, recent cardiac ischemia, shock; liver failure; acute and chronic alcohol abuse; lactation.

The pathogenesis of metformin-induced lactic acidosis is still only partly understood. Conversely, the development of lactic acidosis in the presence of hypoxia, tissue hypoperfusion or liver failure (and coincidental metformin use) is better defined. Metformin exerts its therapeutic effect mainly by inhibiting the hepatic production of glucose from substrates other than sugar (gluconeogenesis), that can be abnormally high in patients with type 2 diabetes [6]. Being a lipophilic compound metformin can accumulate in virtually every tissue. Even so, liver uptake is greatly facilitated by the expression of a transporter known as OCT-1 (similar to the one present on renal tubular cells) on hepatocyte surface [7]. At a cellular level, metformin mildly inhibits the mitochondrial respiratory chain complex 1, thus decreasing hepatocyte energetic charge [8;9]. Rate of gluconeogenesis then diminishes, since glucose generation is an energetically costly process: expression and activities of related enzymes are inhibited, either
Neurotoxicity of viper venom: mechanism and clinical effects

O. Rossetto¹, D. Lonati², A. Gentilli³, M. Cintra-Francischinelli¹, M. Pirazzini¹

¹ Department of Biomedical sciences, University of Padova
² Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia
³ Department of Animal Biology, University of Pavia

Snake venom are complex mixtures of biologically active proteins. They contain several enzymes and toxins that act in synergy to fulfill the two main functions of the venom that are subduing and digesting prey. The most common species of venomous snakes of medical importance in Italy are Vipera aspis and Vipera berus whose clinical features are mostly local, but can be associated with systemic signs (gastrointestinal and coagulation disorders, low blood pressure) in cases of severe envenomation. Peripheral

References
Valutazione di un Test rapido (TQS) per la determinazione dello stato immunitario antitetanico in pazienti con ferite in Pronto Soccorso

Pronto Soccorso, USSL 10 “Veneto Orientale”, San Donà di Piave

Obiettivo

L’obiettivo di questo lavoro è stato valutare l’utilità del test rapido TQS, Tetanus Quick Stick, nel migliorare l’appropriatezza della immunoprofilassi antitetanica non programmata in Pronto Soccorso nei pazienti con una ferita.

Premesse

Nonostante la disponibilità di vaccini efficaci, il tetano rimane un problema, con un’incidenza in Italia che varia fra il 60 e 100 casi/anno (0,2 casi per 100.000 abitanti/anno, circa 10 volte le medie statunitensi ed europee) con mortalità che raggiunge il 39%.

Il rischio per i Medici di Pronto Soccorso, di incontrare un paziente con ferita esposta al tetano, è quotidiano, ed è loro la responsabilità di attuare l’adeguata profilassi antitetanica.

Fino ad oggi l’unico strumento per valutare lo stato di immunizzazione antitetanica in urgenza, in assenza di documentazione attestante l’avvenuta vaccinazione, è la capacità del paziente di ricordare la vaccinazione e/o il risultato, ma questo, in vari studi, è stato di mostrato essere fallace. Secondo l’OMS, però, l’unica prova accettata di immunità individuale resta un titolo sierico di anticorpi antitetanico superiore a 0,1 UI/ml, misurato mediante emoagglutinazione passiva, ma questi test richiedono più giorni per essere effettuati, risultando di poca utilità in urgenza, e questo implica un’inevitabile incertezza ed imprecisione nella scelta di somministrare o meno la profilassi.

Molti studi infatti dimostrano come, a causa della variabilità individuale nella risposta al vaccino, il 13-20% della popolazione regolarmente vaccinata non presenti un tasso anticorpale adeguato, e, per contro, come circa il 60-80% della popolazione che, seguendo le indicazioni date dalle tabelle del ministero della salute, sarebbero da sottoporre alla profilassi antitetanica, risulti in realtà ancora immunizzata.

Da studi effettuati in Italia ed in altri paesi industrializzati risulta una scarsa attenzione ed eccessiva sicurezza da parte dei medici di Pronto Soccorso nei confronti della profilassi antitetanica. Solo il 50% dei medici ripetono nei veri casi lo stato vaccinale del paziente, e, mentre in alcuni pazienti viene effettuata una sovra-immunizzazione, per altri, proprio quelli ad elevato rischio di contrarre il tetano, viene omessa o delegata la profilassi.

Al fine quindi di valutare con appropriaezza lo stato di immunizzazione antitetanico dei pazienti feriti che si presentano al nostro Pronto Soccorso, abbiamo introdotto un metodo, per valutare il reale stato di sieroprotezione del paziente: il Tetanus Quick Stick® (TQS), un test immunocromatografico per la determinazione rapida (10 minuti) degli anticorpi anti-tetano in campioni di siero, plasma o sangue intero. L’utilizzo e la valutazione del test TQS fa parte di un progetto MCQ previsto dal sistema di accreditamento istituzionale aziendale.

Materiali e Metodi

Dal Febbraio 2009 ad oggi, nel nostro Pronto Soccorso, stiamo valutando il test rapido TQS (il test è distribuito in Italia da In- test Sanità srl), in pazienti con ferita ritenuta suscettibile al rischio tetanico, in assenza di documentazione o con documentazione attestante la necessità di immunoprofilassi attiva, secondo il protocollo del Ministero della Salute. Il test TQS è stato effettuato dal personale infermieristico in fase di triage o all’inizio della visita e mantenendo momentaneamente in cieco il risultato. Per ogni paziente si è provveduto, da parte del Medico, alla compilazione di una scheda dove venivano barchette alcune caselle/memo sul tipo di paziente, il tipo di ferita, e l’eventuale profilassi scelta in base ai protocolli ministeriali vigenti. Prima di somministrare la profilassi il risultato del test veniva reso noto al Medico, e pertanto veniva registrato e con il risultato del test modificava la profilassi poi di fatto consigliata. L’esecuzione del test ha richiesto in media circa 12 minuti, non ha generato alcuna criticità né per i pazienti né per gli operatori.

Risultati: 132 pazienti sono stati sottoposti al test TQS.

Di questi:

- 17 sono stati esclusi dal computo per errori nella trascrizione della cartella di raccolta dei dati
- 59 pazienti sono risultati positivi al test TQS e quindi già immunizzati contro il tetano
- 56 pazienti sono risultati negativi e quindi non immunizzati
- 6 di questi 115 pazienti asservirono di essersi recentemente sottoposti a richiamo vaccinale, e sono risultati invece negativi al test TQS, e quindi non immunizzati rispetto al tetano.
Da questa esperienza pilota, emerge che il TQS ha modificato la gestione nel 65/115 pari a 56,5% dei casi, come segue:

- ha permesso di evitare trattamenti con IG non necessari in 59 casi su 115 (51,3%) con un reale beneficio per i pazienti ed un interessante risparmio economico;
- ha permesso di individuare e trattare 6/115 (5,2%), che, pur asserendo di essere stati recentemente immunizzati, risultarono negativi al test.

Conclusions

Il test TQS è risultato utile per determinarne il reale stato di immunizzazione verso il tetano e applicare in modo appropriato l’immunoprofilassi confrontato alla sola indagine anamnestica. Inoltre ha permesso di individuare i pazienti a reale rischio di infezione tetanica che altrimenti sulla base della sola intervista anamnestica non sarebbero stati trattati con l’immunoglobulina.

Tetano: dalla profilassi in pronto soccorso al trattamento in terapia intensiva

A. Lepore

Azienda Ospedaliero Universitaria “Ospedali Riuniti” Foggia

Il rischio di sviluppare il tetano è attualmente più elevato nei pazienti per i quali la prognosi è peggiore: i soggetti anziani, immuno-depressi o tossicodipendenti.

La tetanospasmina è la principale tossina responsabile della sintomatologia. Blocca, a livello delle terminazioni presinaptiche delle cellule di Renshaw e delle fibre “Ia” la liberazione dei neurotrasmettitori inhibitori, che sono la glicina e l’acido γ-hidrossibutirrico.

Il meccanismo di azione della tetanospasmina spiega, dunque, come la sintomatologia del tetano sia dominata da segni muscolari (contratture, spasmi) e sintomi cardiovascolari (tachicardia, ipertensione arteriosa, bradicardia, arresto cardiaco).

La diagnosi di tetano è esclusivamente clinica nella misura in cui gli esami complementari sono utili solo per escludere eventuali diagnosi differenziali (tetania, ipocalcemia, encefalite, meningite, avvelenamento da stricnina e lenitazine, stroke cerebrale).

Tabella 1 - Dakar e Philipps

<table>
<thead>
<tr>
<th>Score di gravità: score di Dakar</th>
<th>Sede=1</th>
<th>Sede=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementi della prognosi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incubazione</td>
<td>< 7 giorni</td>
<td>>7 giorni o sconosciuta</td>
</tr>
<tr>
<td>Invasione</td>
<td>< 2 giorni</td>
<td>>2 giorni o sconosciuta</td>
</tr>
<tr>
<td>Porta d’entrata</td>
<td>Ombelicale</td>
<td>Altra (e) o sconosciuta</td>
</tr>
<tr>
<td></td>
<td>Uterinica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ustione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frattura aperta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chirurgica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iniezione intramuscolare</td>
<td></td>
</tr>
<tr>
<td>Parossismi</td>
<td>Presenza</td>
<td>Assenza</td>
</tr>
<tr>
<td>Frequenza cardiaca (bat min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adulto</td>
<td>>120</td>
<td>>120</td>
</tr>
<tr>
<td>Neonato</td>
<td>>150</td>
<td>>150</td>
</tr>
</tbody>
</table>

Score di gravità: score di Phillipps

<table>
<thead>
<tr>
<th>Fattori</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo di incubazione</td>
<td></td>
</tr>
<tr>
<td>< 48 ore</td>
<td>5</td>
</tr>
<tr>
<td>2 – 5 giorni</td>
<td>4</td>
</tr>
<tr>
<td>5 – 10 giorni</td>
<td>3</td>
</tr>
<tr>
<td>10 – 14 giorni</td>
<td>2</td>
</tr>
<tr>
<td>>14 giorni</td>
<td>1</td>
</tr>
<tr>
<td>Sito di infezione</td>
<td></td>
</tr>
<tr>
<td>Interna e ombelicale</td>
<td>5</td>
</tr>
<tr>
<td>Testa, collo, tronco</td>
<td>4</td>
</tr>
<tr>
<td>Lesione prossimale degli arti</td>
<td>3</td>
</tr>
<tr>
<td>Interessamento distale degli arti</td>
<td>2</td>
</tr>
<tr>
<td>Sconosciuta</td>
<td>1</td>
</tr>
<tr>
<td>Stato di vaccinazione</td>
<td></td>
</tr>
<tr>
<td>Mai vaccinato</td>
<td>10</td>
</tr>
<tr>
<td>Vaccino possibile o immunizzazione materna (tetano neonatale)</td>
<td>8</td>
</tr>
<tr>
<td>>10 anni</td>
<td>4</td>
</tr>
<tr>
<td><10 anni</td>
<td>2</td>
</tr>
<tr>
<td>Vaccinazione aggiornata</td>
<td>0</td>
</tr>
<tr>
<td>Fattori aggravanti</td>
<td></td>
</tr>
<tr>
<td>Ferita o malattia che mette in gioco la prognosi vitale nell’immediato</td>
<td>10</td>
</tr>
<tr>
<td>Ferita o malattia che mette in gioco la vita ma non immediatament</td>
<td>8</td>
</tr>
<tr>
<td>Ferita o malattia che non mettono in gioco la prognosi vitale</td>
<td>4</td>
</tr>
<tr>
<td>Ferita o malattia minore</td>
<td>2</td>
</tr>
<tr>
<td>Paziente sano</td>
<td>0</td>
</tr>
</tbody>
</table>
Intossicazioni acute da piante e tossine vegetali
Acute intoxications from plants and vegetal toxins

S. Bigi, S. Vecchio, A. Giampreti, D. Lonati, C. Locatelli
Poison Control Center and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia

There are more than 400,000 plant species distributed throughout our planet. They grow adapting to different environments that are determining for the production of the active molecules contained in each plant. These molecules, in all populations, have always been used both as nutrients, as for their therapeutic effects. Still nowadays herbal preparations are the major treatment in developing countries, where modern traditional medicine is not completely diffused yet. Moreover, even in industrialized countries, it is more and more common that patients recur to natural medicine as an alternative to the traditional one.

As vegetal derivatives have such a large diffusion, the intoxications are not rare events due to many causes such as food contamination, the frequent habit of picking up plants for cooking purposes, the use of herbal preparations that often have not undergone quality control or of plants for their known psychoactive effects and to accidental contact with plants species imported from different countries for ornamental purposes.

The risk and seriousness of an intoxication is highly variable depending on the type of toxin involved, the amount ingested, the kind of exposure and to interindividual sensibility.

The major groups of toxins in terms of spreading and toxicity are:
- Alkaloids: the majority of these toxins produce anticholinergic or neuroexcitatory syndromes (atropa, nicotine, lysergic acid, ephedrine); other are responsible for cholinergic syndromes (pilocarpine) or hepatic failure (heliotropium);
- Glycosides: cardioactive steroids (oleandrine, digitoxine), that inhibit Na+/K+ pump with consequent alteration of the cardiac repolarization, with consequent effects on normal cardiac conduc-
tion and with neurotoxicity (CNS depression followed by neuroexcitatory effects);
- Toxins with antimitotic effect, such as colchicine and vincristine.

A common cause of intoxication is from contact with plants containing calcium oxalates that are responsible for cutaneous irritation or edema and hyperemia of mucous membranes after ingestion. In the majority of cases the treatment is based on cutaneous or gastrointestinal decontamination and on supportive therapy. There are no specific antidotes except in the case of intoxication from digitalis glycosides that can be effectively treated with Fab fragments normally used in intoxication from digoxin.

Plants intoxication is a field in constant evolution: distribution of plants potentially toxic and of their derivatives change continuously depending on diffusion, production of new herbal preparations, new uses in medicine or for recreational purposes.

In the majority of cases there are no laboratory methods for the dosage of vegetal toxins. As in many cases it is not even possible to recognize the plant or the natural products responsible for the intoxication. Poison Centres hold a relevant role in the interpretation of anamnestic data and in identifying the clinical picture in order to plan an adequate management and treatment of the patient.

References

Rischi tossicologici delle medicine complementari: aspetti regolatori e clinici
Complementary and Alternative Medicine (CAM): toxicological risks and regulatory aspects

A. Giampreti 1, S. Selletti 2

Preparations and traditional remedies presented in complementary and alternative medicine (Chinese Traditional Medicine, Ayurvedic Medicine, African Medicine etc.), consist mainly of herbal preparations. The potential adulteration, contamination and presence of chemical (e.g. heavy metals) or biological (bacteria, parasites) residues is not only possible but can undermine the safety of these products. Legislation and regulation of alternative medicine in both Western and Asian countries are changing in the last years and they are undergoing an upgrading process involving the dispositions currently in force for these “medicines”. Several poisoned patients due to alternative remedies utilization are described in medical literature. Different and several toxicological risks may be hidden in CAM remedies and may be related to: (i) herbal active principles able to determine both lesional effects (e.g.
La possibilità di sviluppare insufficienza epatica deve essere presa nell’azione di coniugazione dell’intermedio reattivo del paracetamolo, rimpiazzando le scorte mitocondriali e citosoliche di GSH esaurite.

Il paracetamolo (N-acetil-p-aminofenolo) fu introdotto in terapia come farmaco ad attività essenzialmente antipiretica ed analgesica, alternativo all’acido acetilsalicilico e più sicuro soprattutto nella fanciulla pediatrica.

Il metabolismo del paracetamolo è essenzialmente epatico (98%) e da probabile riduzione del trombossano B2 e dall’escrezione renale.

Nelle situazioni particolari quali le assunzioni ripetute, o la concomitanza di disordini alimentari, utilizzo cronico del farmaco e situazioni di gravi avvelenamenti accidentali. In Italia viene commercializzato come farmaco da banco sia come tale che in associazione con altri principi attivi.

Il paracetamolo (N-acetil-p-aminofenolo) fu introdotto in terapia come farmaco ad attività essenzialmente antipiretica ed analgesica, alternativo all’acido acetilsalicilico e più sicuro soprattutto nella fanciulla pediatrica. In Italia viene commercializzato come farmaco da banco sia come tale che in associazione con altri principi attivi. Non sono quindi rari i casi di abusi od avvelenamenti volontari.

La casiistica del CAV di Milano costituisce inoltre una voce di primaria importanza non solo per quanto concerne le intossicazioni volontarie, ma soprattutto perché il farmaco si utilizza con frequenza elevata in ambiente domestico (circa il 13% di tutti i principi terapeutici). Per tale motivo è causato, notevolmente sottostimata, di gravi avvelenamenti accidentali.

L’antidoto utilizzato nell’intossicazione da paracetamolo è l’N-acetilcisteina, il derivato N-acetilato della L-cisteina dotato, rispetto a quest’ultima, di maggior stabilità e biodisponibilità. La NAC agisce rimpiazzando le scorte mitocondriali e citosoliche di GSH esaurite nell’azione di coniugazione dell’intermedio reattivo del paracetamolo. La possibilità di sviluppare insufficienza epatica deve essere presa in considerazione per dosi superiori a 150mg/Kg in unica somministrazione.

In caso di somministrazioni superiori a quelle terapeutiche ripetute nel tempo, nei seguenti casi: adulti: > a 4g per periodi superiori ad 8h bambini >6aa = o > 200mg/Kg nelle precedenti 24h oppure = o > 150mg/Kg/24h per 2gg oppure = o > 100mg/Kg/24h per 3 o più giorni successivi bambini >6a almeno 10g o 200mg/Kg/24h oppure almeno 6g o 150mg/Kg/24h nelle precedenti 48h.

L’indicazione alla somministrazione di NAC nell’ingestione acuta andrebbe effettuata in base al dosaggio plasmatico del paracetamolo (effettuato non prima della quarta ora dall’ingestione) calcolato in relazione al tempo intercorso (nomogramma di Rumack-Matthew). Purtroppo tale modello non è utilizzabile in situazioni particolari quali le assunzioni ripetute, o la concomitanza di fattori in grado di modificare la cinetica del paracetamolo (assunzione cronica di induttori farmaco-metabolici, di alcoolici, concomitanza di disordini alimentari, utilizzo cronico del farmaco stesso). Il protocollo di trattamento approvato dalla FDA ed attualmente utilizzato in Europa è il seguente (Daly et al, 2008): Dose d’attacco 150 mg/Kg e.v. in glucosata al 5% somministrato in 60’, Mantenimento 30mg/Kg in 4h + 100 mg/Kg in 16h.

Nei pazienti che sviluppano danno epatico la terapia di mantenimento andrebbe continuata fino al miglioramento degli indici di funzionalità epatica.

L’antidoto andrebbe somministrato possibilmente entro 24 ore dall’evento acuto.

Bibliografia
Ellenhorn MJ, Ellenhorn’s Medical Toxicology: Diagnosis and Treatment of Human Poisoning, Williams and Wilkins, Baltimore, 1997

CENTRO ANTIVeleni, Azienda Ospedaliera, Ospedale Niguarda-Cà Granda, Milano

Trattamento antidotico dell’intossicazione da paracetamolo

R. Borghini, F. Davanzo, F. Assisi, M. Bissoli, T. Della Puppa, V. Dimasi, M. Ferruzzi, P. Moro, I. Rebutti, A.R. Travaglia

Materiale protetto da copyright. Non fotocopiare o distribuire elettronicamente senza l’autorizzazione scritta dell’editore.

SUBSTANCES OF ABUSE AND CHEMICAL EMERGENCIES

emergency care journal - organizzazione, clinica, ricerca • Anno VII numero 1 • Marzo 2011 • www.ecj.it

25
Le vitamine come antidoti

P. Botti, MR. Quaranta, M. Sili, A. Ieri, A. Missanelli, F. Gambassi

SOD Tossicologia Medica – SODs Centro Antiveleni
Dipartimento Emergenza e Accoglienza, Azienda Ospedaliero Universitaria Careggi, Firenze

Premessa: le vitamine sono sostanze organiche assunte con gli alimenti, indispensabili all’organismo per la loro molteplice ed insostituibile attività, solitamente di tipo coenzimatico, il fabbisogno di alcune vitamine può aumentare criticamente in corso di intossicazioni acute e croniche che determinano la loro deplezione o inattività. In questi casi, il loro reintegro assume a pieno titolo un ruolo antidotico, nella accezione etimologica ed ampia (latta propria da IPCS) di antidoto come sostanza terapeutica atta a contrastare l’azione tossica di uno specifico xenobiotico. Lo scopo di questo contributo è quello di verificare, sulla scorta della letteratura e dell’esperienza clinica del nostro gruppo, le indicazioni all’impiego e la reale efficacia delle poche vitamine proposte come antidoti.

Tiamina (vitamina B1): è coinvolta in numerose reazioni enzimatiche del ciclo di Krebs e nel mantenimento della normale conduzione neuronale. Gli stati gravemente carentiali, primo fra tutti quello indotto da abuso cronico di alcol, possono esitare in quadri clinici ad espressione acuta, quali il beri beri cardiovascolare e l’encefalopatia di Wernicke. Esistono sufficienti contributi letterari, seppure con basso grado di evidenza, che concordano sull’utilità della somministrazione di Tiamina ad alte dosi (100 – 200 mg i.v. ripetuti fino al raggiungimento di una dose di 1 gr nelle 24 ore) nella encefalopatia di Wernicke. È questa la sola patologia tossicologica per la quale esiste espressa indicazione della FDA all’impiego antidotale di Tiamina.

Piridossina (vitamina B6): la sua forma attiva piridossal – 5 - fosfato (PSF) è cofattore di numerose reazioni enzimatiche la più importante delle quali è quella che conduce alla produzione di GABA tramite una specifica decarbossilasi dell’acido glutammico (GAD). Alcuni xenobiotici (isoniazide, lunghi del genere Gyromitra, piante contenevano monomotulidrazina, composti idrazinici di ambito industriale) sono in grado di inibire il PSF e quindi la produzione di GABA, determinando una iperecцитabilità neuronale che può esprimersi con crisi convulsive o stato di male epileptico. Il razionale dell’uso antidotico della piridossina in questi casi è forte e sostenuto da sufficiente e concorde letteratura clinica, almeno nell’intossicazione acuta da isoniazide in cui viene raccomandata la posologia equiponderale (Pridossina 1 g i.v. per ogni grammo di isoniazide assunto fino ad una dose totale di 5 g).

Firomenadione (vitamina K1): il warfarin e i topici di base di anticoagulanti a lunga durata dazione (Brodifacoum, Flocoumafen, Difenacoum, Bromadiolone, Chlorophacinone, Diphacinone ed altri) bloccano il ciclo di attivazione della vitamina K inibendo la vitamina K epoxide reductasi e, di conseguenza, tutti i fattori vitamina K dipendenti della cascata coagulativa (II, VII, IX, X). Nei casi di “overanticoagulazione” per intossicazione da anticoagulanti di questo genere, l’indicazione all’impiego antidotico di vitamina K è ampiamente condivisa e la INR è il parametro laboratoristico di riferimento, da acquisire dopo almeno 24 ore dall’evento e da monitorizzare. La biodisponibilità della vitamina K è buona nella somministrazione orale come nella parenterale. La valutazione congiunta dei valori di INR e dei segni clinici (presenza o meno e gravità di fatti emorragici) orienta la necessità, la posologia (sui cui non esistono dati univoci), il ruolo (esaustivo o complementare) e la via di somministrazione (di Vitamina K). I tempi di recupero dell’omeostasi coagulativa – da pochi giorni a molti mesi - e quindi la durata del follow up dipendono dal tipo di anticoagulante assunto e dalla sua emivita.

Bibliografia

Pronzuk De Garbino J, Hanies JA, Jacobsen D, Meredith T. Evaluation of Antidotes; activities of IPCS, Clinical Toxicology 1997, vol 35(4) 333-343
Salen NP. Wernicke Encephalopathy ; emedicine.medscape.com, updated May 25, 2010
Lheureux P, Penaloza A, Gris M. Pyridoxine in clinical toxicology; a review; Eur J Emer Med, 2005, vol 12 (2) 78 – 85
Caravati ME et Al. Long acting anticoagulant rodenticide poisoning, an evidence based consensus guideline for out-of-hospital management; Clinical Toxicology 2007, 45, 1-22

Overdose da buprenorfina ed efficacia clinica del naloxone

M. C. Grassi

PRGM Tossicologia d’Urgenza e Centro Antiveleni, Umberito I, Policlinico di Roma - Sapienza Università di Roma

La dipendenza da oppioidi è una malattia cronica ad elevata morbilità e mortalità e l’introduzione della buprenorfina ha aumentato la possibilità del trattamento degli eroinomani. La buprenorfina non migliora in seguito a dosi di 0.2-0.4 mg di naloxone entro 40-60 minuti (4). Un recente studio (5), infine, mette in evidenza come la depressione respiratoria causata da un’elevata assunzione di buprenorfina non miglior in seguito a dosi di 0.4-0.8 mg di naloxone e attribuisce questo risultato sia alla cinetica della
Il carbone vegetale attivato

M.L. Farina
Tossicologia Clinica - Centro Antiveleni, Ospedali Riuniti di Bergamo

La decontaminazione da sostanze tossiche rappresenta, dopo la valutazione delle funzioni vitali e il loro ripristino se compro- messe, il punto cardine nel trattamento del paziente con intossicazio ne acuta. Attuata con procedure diverse rispetto alla via di esposizione, per quanto concerne la via gastroenterica la procedura di gran lunga più efficace è rappresentata dall'immub ilione dell’assorbimento, perseguita con la somministrazione di carbone vegetale attivato.

Il carbone vegetale attivato (CVA) adsorbe la maggior parte delle sostanze tossiche, rendendole meno disponibili per l’assorbimento sistemico dal tratto gastroenterico. Il carbone vegetale è detto “attivato” quando è trattato in modo da renderne massima l’area di superficie: 1 grammo di carbone vegetale contiene in media un’area di 1.000 – 1.500 m² (forme molto adsorbenti possono arrivare a 2.000-3.500 m²/grammo); la capacità di adsorbimento è pertanto correlata alla sua porosità.

Numerosi studi hanno evidenziato come la somministrazione precoce di CVA possa essere più efficace dello svuotamento gastrointestinale: studiato in particolare per teofillina, fenobarbital, carbamazepina, difenilidantoina e sostanze con ricircolo enteroepatico. Il carbone vegetale attivato è stato rivelato efficace anche per altri farmaci.

cocomente possibile. La dose utile varia da sostanza a sostanza; mediamente è stimata adeguata una dose 10 volte superiore alla dose stimata di sostanza tossica ingerita. Per alcune intossicazioni sono indicate somministrazioni prolungate di 1-3 grammi/Kg di peso in 24 ore, da frazionare in 4 o 6 somministrazioni o per “gavage” (emoperfusione interna).

Vengono discusse le controindicazioni e cautele.

Viene infine presentato un caso di grave intossicazione conseguente a somministrazione di idantoina e.v. a dosi terapeutiche, risultata successivamente causata da variente genetica del CYP2C9, e risolta con somministrazione di CVA per gavage.

Bibliografia

CCIS(R) System, Micromedex, Inc., Thomson Reuters. 2010

New oximes: is there a clinical applicability?

A. Barelli, M. Soave
Poison Center, A&E Department, Catholic University School of Medicine, Rome

Organophosphorus compounds (OPs) are used as pesticides and developed as warfare nerve agents as well. Exposure to even small amounts of an OP can be life threatening with death usually provoked by respiratory failure. The mechanism of OP intoxication involves inhibition and inactivation of acetylcholinesterase (AChE). AChE inhibition results in the accumulation of acetylcholine at cholinergic receptor sites, producing recurrent stimulation of cholinergic terminals throughout the nervous systems. During the last decades, pyridinium oximes have been developed as therapeutic agents used in the medical treatment of OP poisoning. They act reactivating AChE inhibited by OP. However, they differ in their activity in poisoning with pesticides and warfare nerve agents and there is still no universal broad-spectrum oxime capable of protecting against all known OP. Despite the enormous efforts devoted to development of new pyridinium oximes as potential antidotes for OP poisoning, only a few compounds so far have found its application in human medicine. Presently, a combination of an antimuscarinic agent, e.g. atropine, AChE reactivator such as one of the recommended pyridinium oximes (pralidoxime, trimedoxime, obidoxime and HI-6) and diazepam are used for the treatment of OP poisoning in humans.

Bibliografia

ATTIVITÀ DEL DIPARTIMENTO POLITICHE ANTIDROGA: IL SISTEMA NAZIONALE DI ALLERTA PRECOCIE E RISPONSA RAPIDA PER LE DROGHE (NATIONAL EARLY WARNING SYSTEM – N.E.W.S.)

G. Serpelloni
Dipartimento Politiche Antidroga, Presidenza del Consiglio dei Ministri

Finalità e caratteristiche

Per la raccolta delle informazioni, il N.E.W.S. si avvale di un network di input che coinvolge strutture di diverso tipo (strutture sanitarie, centri antiveleno, laboratori delle tossicologie forensi, laboratori delle Forze dell’Ordine), ma trae informazioni anche dai media, dalle organizzazioni del privato sociale, dagli istituti scolastici, dai luoghi di intrattenimento, ecc. Il Sistema si avvale della stretta collaborazione della Direzione Centrale per i Servizi Antidroga, del Reparto di Investigazioni Scientifiche dei Carabinieri, della Polizia Scientifica, dell’Agenzia delle Dogane e dell’Istituto Superiore di Sanità per la direzione tecnico scientifica. Di particolare importanza risulta la collaborazione con unità operative sanitarie dislocate sul territorio italiano in grado di fornire un’osservazione diretta della popolazione dei consumatori di sostanze stupefacenti (comunità terapeutiche, Ser.T., unità mobili, strutture di emergenza, ecc.). Un ruolo importante per la raccolta delle informazioni è svolto anche dalle unità operative per il monitoraggio della stampa locale e nazionale e per il monitoraggio della rete Internet, sui cui circolano spesso informazioni relative al consumo di nuove sostanze e alle nuove abitudini assuntive riportate dai consumatori stessi. La gestione delle segnalazioni e delle allerte in Italia e in Europa

Nuove sostanze/modalità di consumo e sistema dell’urgenza-emergenza

New substances of abuse and consumption modalities: role of the emergency health

C. Locatelli, D. Lonati, V. Petrolini, C. Rognoni, S. Vecchio, S. Bigi, A. Giampreti, L. Manzo
Poison Control Center and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia

Acute poisoning involving stimulant and hallucinogenic drugs (including smart-drugs) actually represent an increasingly and complex reality due to the great variety of substances, the widespread use among young people and the lack of information about possible short- and long-term effects. The incidence of these poisonings on the emergency healthcare system is still poorly understood; however the hospital admissions concerning stimulants and hallucinogenic consumption are increasing and very common. At now, in addition to cocaine, ecstasy, heroin and marijuana, people utilize other natural and synthetic substances (e.g. ketamine, GHB, methamphetamine, LSD, thorn apple, salvinorin, psilocybin, mescaline, synthetic cannabinoids, di-

Materiale protetto da copyright. Non fotocopiare o distribuire elettronicamente senza l’autorizzazione scritta dell’editore.
methyltryptamine, benzylpiperazine, cathinone) whose effects on human health are less known by patients, emergency physicians and psychiatrists. These substances are often sold in smart-shops as natural or herbal products and consequently considered ‘safe’ (e.g. Salvia divinorum, hallucinogenic mushrooms, Ephedra S. nica, Ayahuasca, Catha Edulis, Pausinytilia Yohimbe, guarana, cannabinoids and synthetic cathinones mixtures). Products containing these substances are also sold as “environment fragrance”, “bath salts”, “fertilizer”, “compost”. Furthermore these drugs are often used together with alcohol and medicines and toxicity due to adulterants (e.g. atropine, scopolamine, levamisole) is possible; for these reasons medical diagnosis is really difficult, complex and in some cases late. The initial approach to the patient need (i) a careful medical history, (ii) the identification of the main syndrome (e.g. excitatory, hallucinatory), (iii) the use of laboratory available tests in order to identify any organ/apparatus injury, (iv) the preventive collection of blood and urine samples for toxicological specific tests (rarely performed in emergency), (v) the role of a Poison Control Centre (PCC) to identify the optimal medical management for the first 12-24 hours of observation. An unusual clinical presentation may cause underestimation of the toxic effects and an early discharge. Specific antidotes are available only in cases involving opiates or anticholinergic compounds (e.g. Datura Stramonium); in the other cases, treatment is based on appropriate clinical presentation may cause underestimation of the toxic effects and an early discharge. Specific antidotes are available only in cases involving opiates or anticholinergic compounds (e.g. Datura Stramonium); in the other cases, treatment is based on appropriate symptomatic treatment (e.g. cocaine induced acute coronary syndrome requires a different therapy from that of coronary thrombosis). The improvement of knowledge of new drugs of abuse need some key points: (a) a greater analytical screening capability, (b) a better understanding of this phenomenon in emergency services, obtained from multicenter studies, (c) the validation of European and National surveillance systems for the early detection of emerging problems. PCC play a key role for the detection of new drugs of abuse related events, for the optimal patient monitoring and the most appropriate treatment. PCC, through warning and surveillance activities, represent preferential observatories of clinical emerging toxicological events, new trends of abuse, clinical pictures of poisoning by new substances and adulterants placed on the market. Together with PCC activities the specific laboratory analysis is essential to identify the substances with absolute specificity and timeliness. As significant examples the recent Italian outbreak of adulterated cocaine with atropine or levamisole, the presence of abnormal concentrations of 6-monoacetylmorphine in contaminated heroin and the presence of other adulterants such as cannabinoids and cathinones in illegally marketed products. In accordance with the EU Council Decision 2005/387/JHA, the Department for Antidrug Policies - Presidency of the Council of Ministers has activated in Italy the National Early Warning System for drugs, whose interface with European and international institutions is the Reitox Italian National Focal Point (within the Department). In this field, the National Early Warning System (NEWS) was created to identify new sentinel cases, to collect and evaluate the few available clinical information, to diffuse clinical signals to the health system, and to promote preventive and regulatory actions involving new substances of abuse and different ways of consumption.

“Legal Highs”: determinazione di 4-FA, mCPP e Mefedrone mediante HS-SPME GC/MS

G. Merola, S. Gentili, T. Macchia

Negli ultimi mesi si è registrato un incremento esponenziale del numero di nuove sostanze psicotrope, le cosi dette “designer drugs”, segnalate a livello europeo dall’European Monitoring Centre for Drugs and Drug Addiction e, nel nostro paese, dal National Early Warning System del Dipartimento Politiche Antidroga - Presidenza del Consiglio dei Ministri. Tali sostanze invadono il mercato di internet, e non solo, grazie alla loro numerosità e novità che rendono impossibile l’inserimento delle stesse nelle tabelle delle sostanze sotto controllo in tempi utili per contrastarne la diffusione. Una lettura importante di queste recenti “designer drugs” è costituita da stimolanti, i cosiddetti “Legal Highs”, sostanze chимicamente de- rivate da amfetamine, piperazine, catinoni ecc., delle quali si ricerca l’effetto psicotico, ma che sono spesso poco conosciute dal punto di vista farmacologico e tossicologico. In Europa questi stimolanti hanno già causato numerosi casi di intossicazione, alcune anche fatali. In Italia, ad oggi, la diffusione non è ancora a livello di altri paesi ma è in rapido aumento. Se dal punto di vista legale contrastare la diffusione di queste sostanze necessariamente richiede tempo, dal punto di vista della identificazione e gestione adeguata delle eventuali intossicazioni si può e si deve agire in fretta. I comuni test di screening effettuati presso i centri di Medicina d’Urgenza non sono in grado di rilevare queste sostanze; neanche analisi più approfondite possono risultare utili perché queste molecole non sono presenti nelle librerie cui le strumentazioni analitiche fanno riferimento. Per tali motivi abbiamo ritenuto utile lavorare all’allestimento di una metodica analitica, in grado di identificare in un’unica analisi quelli che sono al momento i più diffusi tra questi stimolanti. In mancanza di procedure analitiche di riferimento, è stato necessario studiare procedure che rendessero possibile l’individuazione di questi principi attivi, tenendo in considerazione la vasta gamma di classi chimiche a cui essi appartengono e che fossero praticabili da parte dei laboratori di tossicologia. Tale attività è stata condotta nell’ambito del National Early Warning System del Dipartimento Politiche Antidroga - Presidenza del Consiglio dei Ministri. Per la messa a punto della metodica ci siamo avvalsi di standard certificati di 4-Fluoroamphetamina (4-FA), Mefedrone e meta-Chlorophenylpiperazina (mCPP). Le sostanze sono state analizzate dapprima singolarmente e poi in miscela. L’analisi è stata effettuata mediante gas-cromatografia accoppiata alla spettrometria di massa (GC-MS) previa microeletrocromatografia su fibra in spazio di testa (HS-SPME) e successiva derivatizzazione con Anidride Acetica. Si riportano il cromogramma e gli spettri di massa ottenuti. Riteniamo questo il primo passo necessario per una successiva applicazione in materici biologici a supporto della diagnosi in casi di intossicazione. Non ultimo, data la novità delle sostanze, riteniamo la procedura descritta un primo supporto per i laboratori di tossicologia oggi chiamati a cimentarsi con queste sostanze.

Bibliografia

Drug-related deaths in the UK. National Programme on Substance Abuse Deaths. July 2010. p.77

Coordinamento e organizzazione del Sistema Nazionale di Allerta Precoce – National Early Warning System (N.E.W.S.)

C. Rimondo

Dipartimento delle Dipendenze, Azienda ULSS 20, Verona

Aspetti organizzativi del N.E.W.S.
Il Sistema Nazionale di Allerta Precoce opera mediante gruppi di lavoro organizzati su tre livelli funzionali, strutturati sulla base di un criterio di responsabilità derivante dal ruolo istituzionale ricoperto dall’organizzazione coinvolta e dall’operatività concreta che questa svolge all’interno del sistema istituzionale:

1. “livello decisionale”, a cui competono le decisioni finali relative a se, quando, dove e come attivare le eventuali allerte. Il livello decisionale risulta composto da Amministrazioni centrali e Regioni e Provincie Autonome;
2. “livello consultivo”, in ambito tecnico-scientifico, con funzioni di studio e supporto per il livello decisionale;
3. “livello operativo” che alimenta il flusso dei dati e delle informazioni in entrata dal territorio e realizza le azioni di risposta.

La Direzione del Sistema si avvale della consulenza e dell’operatività di tre strutture, ognuna competente e responsabile per il coordinamento di un’area specifica:

- Coordinamento nazionale degli aspetti bio-tossicologici: di competenza dell’Istituto Superiore di Sanità, fornisce pareri, consulenze, supervisione agli eventi che nel tempo si presentano e che sono oggetto di attività del Sistema nell’ambito clinico-tossicologico;
- Coordinamento nazionale degli aspetti operativi: di competenza del Dipartimento delle Dipendenze, Azienda ULSS 20 Verona, costituisce il centro di raccolta delle segnalazioni, coordina i flussi informativi, predispone le segnalazioni, le attenzioni e le allerte per la supervisione degli altri coordinamenti e della direzione, cura l’aggiornamento del network di input e output, coordina l’aggiornamento e il funzionamento tecnico del software, gestisce il sistema di comunicazione interna, coordina le indagini di campo.
- Il Sistema si avvale inoltre di una serie di consulenze tecnico-scientifiche che coinvolgono le strutture scientifiche e laboratoriali presenti sul territorio nazionale e realmente operative nel settore, e, a seconda della tipologia di informazioni da reperire e/o da approfondire, anche unità operative che lavorano a diretto contatto con i consumatori di sostanze. Le strutture per la consulenza tecnico-scientifica vengono individuate come Centri Collaborativi del Sistema Nazionale e costituiscono la rete degli esperti per la consultazione precoce (Early Expert Network).

Il software “N.E.W.S.”: georeferenziazione e comunicazione multicanale
La gestione delle segnalazioni e delle allerte è gestita operativamente dal Dipartimento delle Dipendenze, Azienda ULSS 20 di
Verona, e viene supportata con uno specifico software web 2.0 “Geo Drugs Alert” (www.allertadroga.it). Si tratta di una tecnologia di ultima generazione che consente la georeferenziazione delle segnalazioni in entrata (input) permettendo quindi un’attivazione territoriale delle allerte (output) attiva e basata su una mappatura che tiene conto delle vie di transito e spaccio delle sostanze. Il sistema prevede anche la possibilità di acquisire segnalazioni nelle varie forme di comunicazione esistenti (telefono, e-mail, fax, sms, mms) ed è in grado di raggiungere, mediante una trasmissione contemporanea e multicanale, qualsiasi tipo di struttura, anche quella meno attrezzata o che non dispone di una connessione Internet, nonché la singola persona sul territorio reperibile con un semplice telefono cellulare. Infine, i destinatari delle comunicazioni di output possono essere selezionati sulla base della competenza e della responsabilità che essi hanno in tema di tutela e promozione della salute pubblica, nonché sulla base del carattere della comunicazione e della loro localizzazione geografica.

Sostanze d’Abuso, Plasticità Neuronale e Psicopatologia

G. Biggio
Presidente Società Italiana di Neuropsicofarmacologia, Dipartimento di Biologia Sperimentale, Facoltà di Scienze Matematiche, Fisiche e Naturali, Università degli Studi di Cagliari

La moderna neurobiologia clinica ha dimostrato che il cervello diventa adulto a 18-20 anni nel sesso femminile, 20-23 nel sesso maschile. Gli anni dell’adolescenza (10/13-19/23) risultano essere cruciali per lo sviluppo fisiologico del cervello e il raggiungimento di un buon equilibrio mentale. Un ambiente familiare e scolastico positivo e ricco di motivazioni è un elemento fondamentale per un normale sviluppo delle facoltà mentali. L’assunzione di sostanze d’abuso (cannabis, alcol, cocaina, eroina, ecstasy, etc.) risulta deleteria e pone in maniera non invasive qualsi effetti nocivi permanenti la struttura e il funzionamento del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

La valutazione del danno strutturale e metabolico con RM ad alto campo nell’abuso di sostanze

F. Alessandri
Servizio di Neuroradiologia, Azienda Ospedaliera di Verona, Ospedale Civile Maggiore Borgo Trento

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.

Le più importanti funzioni psichiche, executive e sociali, come la capacità di giudizio, il controllo inibitorio dei comportamenti e le ‘social cognitions’ sono strettamente collegate a diverse strutture cerebrali che sottendono il normale funzionamento fisiologico del cervello. L’uso di sostanze stupefacenti può alterare in maniera anche permanente il corretto funzionamento del cervello, deviandolo dal normale percorso evolutivo, soprattutto se l’uso di droghe avviene in un individuo di giovane età. L’emungo e la senescenza. I soggetti portatori di specifici polimorfismi genici sono particolarmente vulnerabili agli effetti di queste sostanze e più facilmente possono andare incontro a psicopatologia.
Mephedrone and the cathinones: the UK experience and a European perspective

D. Wood

Medical Toxicology Unit, Guy’s and St Thomas’ Poisons Unit, London

Introduction Routine toxicological screening is not undertaken in individuals presenting to emergency departments (ED) with acute recreational drug toxicity, because it does not usually alter an individual patient’s management. Localised information on the types of recreational drugs being used is often not available. The pilot study described here looks at the analysis of presumed recreational drugs in the possession of individuals presenting to the ED with acute recreational drug toxicity. Methods Suspected recreational drug samples were handled as controlled drugs and transported to a Home Office approved laboratory. Samples were initially categorised on the basis of their physical appearance; liquid samples were analysed by infrared spectrophotometry and non-liquid samples were analysed by gas chromatography-mass spectrometry. Results A total of 33 (12 liquid and 21 non-liquid) samples was analysed in this pilot study. Liquid samples were shown to contain either gamma-butyrolactone or isopropyl nitrite. 19% of non-liquid samples (12% of total samples) did not contain any drugs and 23% contained legal pharmaceutical agents. Of the remaining samples, they contained both ‘classic’ and ‘novel’ recreational drugs. Only 33.3% of crystalline substances contained methamphetamine. Discussion This pilot study has shown that analysing samples obtained in the ED can contribute to clinicians’ knowledge of local drug epidemiology. Extension of this approach in areas with a high prevalence of recreational drug use, with appropriate funding, may be useful in monitoring drug trends and detecting novel emerging drugs.

Effetti clinici di GHB e analoghi

Clinical effects of GHB and analogues

V. Petrolini, S. Vecchio, S. Bigi, C. Locatelli

Poison Control Center and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia

Gamma hydroxybutyric acid (GHB) is a molecule that has been used for over 30 years in medical therapy for its hypnotic, anaesthetic and anti-narcolepsy properties, for alcohol disin intoxication and for avoidance of alcohol withdrawal syndrome. It is now used, usually in the form of sodium salt, with recreational purposes as a substance of abuse (often in combination with other substances). Its precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), have diffused among people with comparable purposes. Finally GHB has also been proposed for bodybuilding and in order to obtain weight loss. Similarly to many other substances defined as “empathetic” or “entactogenic”, it is now being used by teenagers and young adults in meeting places, clubs, techno music concerts and rave parties to “enhance social experiences, facilitate interpersonal contact, reduce inhibitions and induce changes in mental status. It is usually taken orally, and its cost is limited; often those who consume it are, or rather love to be considered occasional consumers of “not harmful” substances, who like to have fun over the weekend not despising some social “lubricants”. GHB is a physiological neurotransmitter (the highest concentration is located in the basal ganglia) involved in the regulation of many processes in the central nervous system including the sleep-wake cycle, temperature, glucose metabolism and cerebral vasoregulation, memory and emotional control. GHB binds to the receptor gamma-aminobutyric acid (GABA)-B and to specific receptors. At low doses/ concentrations it determines the reduction of dopaminergic activity in the basal ganglia (probably by inhibiting the release of dopamine), whereas at high doses/ concentrations it stimulates the release of dopamine. It also interacts with serotonin receptors, opioid and cholinergic pathways, and the effects appear to be dependent on a number of variables not yet well defined.

Acute intoxication with GHB has increased in frequency in the recent years also in Italy. Around the year 2000 few cases per year were recorded, mostly for drug intake by alcoholics in treatment. Today numerous consultations per week are required from Poison Control Centers for the management of patients intoxicated with GHB. The effects of GHB occur rapidly after oral ingestion and include euphoria, disinhibition, dizziness and inebriating sensation, that are followed within 30 minutes by drowsiness that may progress to stupor and coma. Symptoms of overdose include vomiting, bradycardia, hypotension, muscular hypo tone, involuntary movements or even seizures, from respiratory depression (sometimes very rapid appearance) to respiratory arrest, hypothermia, loss of protective laryngo-pharyngeal reflexes, CNS depression and miosis. Often, the syndrome may seem an overdose of opioids, but does not respond to naloxone. The severity of effects depends both on the dose taken and on the simultaneous presence of other molecules such as cocaine, amphetamines, cannabis, alcohol and benzodiazepines. An important effect is amnesia, which makes it a compound nowadays often used to perpetrate sexual violence. Spontaneous resolution of symptoms occurs in most cases within 6-10 hours. Treatment is based on life support. Fatal cases have
be recorded in many countries. In the last six months Pavia Poison Control Center has reported numerous cases of acute intoxication from GHB: in some cases, they were groups of patients who arrived simultaneously to the Emergency Department due to incorrect assumption of high doses of GHB at parties and gatherings. The diagnosis is not simple, and currently there are no specific analytical tests to run on urgency, but a specific analysis is needed that can only be done in a few specialized laboratories.

Intossicazioni da sostanze d’abuso nel DEA di Treviso

M. L. Maifreni
Pronto Soccorso e Medicina d’urgenza, Ospedale di Treviso ASL 9 Veneto

Vengono assistiti 412260 abitanti mentre il SUEM con il servizio di Elisoccorso copre la provincia di Treviso con 883.840 abitanti e parte di due province limitrofe (Vicenza e Venezia)
La città di Treviso conta 82208 abitanti ed il presidio ospedaliero di Treviso consta di 1080 posti letto.

Vi è personale dedicato al Pronto Soccorso ed alla Medicina d’Urgenza in un DEA di secondo livello ed altro personale dedicato al SUEM.

Gli interventi del SUEM dal 2001 al 2009 sono stati:
- Cocaina 14 casi
- Eroina 194 casi
- Esotossicosi etilica 2248 casi

In Pronto Soccorso a Treviso nel 2009 vi sono stati 96728 accessi con una media di 265 accessi al giorno con punte massime di 403 e 6389 casi per incidenti stradali.
La Medicina d’Urgenza del presidio ospedaliero di Treviso consta di 42 posti letto di cui 4 di Terapia Semintensiva, la Rianimazione di 12 posti letto.

Per motivi informatici è stato possibile rilevare dati solo dal gennaio 2010.
Il nostro sistema informatico prevede diagnosi d’accesso di Triage e diagnosi di dimissione per ora solo testuali: è in fase di implementazione per quanto riguarda la diagnosi codificata.

Nel 2010 gli accessi totali in Pronto Soccorso da gennaio ad agosto sono stati di 60417 casi

Di questi 3878 riguardavano incidenti stradali ed in 203 casi è stata richiesta la ricerca di alcolemia e sostanze stupefacenti.
Non risulta essere stata effettuata tale ricerca in altre circostanze.
Dei 203 casi sono risultati positivi:
- alcol 34 (16%)
- cannabis 8 (3,9%)
- oppiacei 4 (1,9%)
- cocaina 5 (2,4%)
- benzodiazepine 14 (6,8%)

Non risultano accessi in Rianimazione per intossicazione da sostanze d’abuso. Viene segnalato 1 caso nel 2006 per assunzione di sostanze non note.
Segnalato un caso di ischemia miocardica secondario ad assunzione di cocaina e ricoverato in Unità Coronarica.

La Medicina d’urgenza ha ricoverato nella terapia semintensiva (4 posti letto):
- 2009
 - Metadone 3 casi
 - cannabis + alcol 1 caso
 - eroina 1 caso
- 2010 (da gennaio ad agosto)
 - delirium tremens vero 11 casi (abuso etilico “minore”–astinenza alcolica minore vengono gestiti nel reparto)
 - alcolismo acuto 8 casi
 - altri 3 casi
 - Ketamina 2 casi (stesso paziente recidivo)

Il nostro laboratorio, ora fornito di una sezione di tossicologia clinica, da circa 2 anni dosa nel nostro presidio (prima dosate all’ARPAV) le seguenti sostanze:
- dosaggio quantitativo su plasma per Benzodiazepine, Antidepressivi triciclici, Barbiturici, alcolemia con dati forniti entro un’ora circa
- su campione urinario per oppiacei, cannabinoidi, amfetamine, benzodiazepine, cocaina e cocaina metabolita, metadone e metadone metabolita, ecstasy, buprenorfina, benzodiazepine ed antidipressivi triciclici.

Vi è una stretta collaborazione con il nostro laboratorio che è fornito di una sezione di tossicologia clinica; i pazienti con problemi tossicologici vengono ricoverati usualmente in Terapia Semintensiva della Medicina d’urgenza o in Rianimazione e spesso ci si avvale della consulenza del Centro Antiveleni di Pavia.

Per dare un’ulteriore idea della nostra popolazione, il nostro SERT attualmente segue i seguenti pazienti con dipendenza, anche mista, da:
- cannabis 128
- cocaina 110
- eroina 313
- ecstasy 12
- crack 3
- allucinogeni 1
- amfetamina 10
- metadone 8
- LSD 4
- alcool 230

Non vengono conteggiati i numerosi pazienti che frequentano i singoli ACAT.

Materiale protetto da copyright. Non fotocopiare o distribuire elettronicamente senza l’autorizzazione scritta dell’editore.
Poisoning from substances of abuse in the EDs in Parma and Fidenza

G. Rastelli, V. Brianti, G. Cervellin

1 UO di Pronto Soccorso e Medicina d’Urgenza, Dipartimento di Emergenza-Urgenza e della Diagnostica, Ospedale di Fidenza-S. Secondo, Azienda Ospedaliero-Universitaria di Parma

According with the 2nd UNODC (United Nation Office on Drugs and Crime) Report, year 2009, the global consumption of abuse substances is increasing: about 172-230 millions people worldwide declare to have consumed illicit substances at least once in the last year. The annual report on drug dependences of the Italian Parliament, year 2008, shows that in our Country the heroin abuse is slightly increasing, cocaine abuse has involved (in at least one episode) 7% of the population (about as twice as the European average data), and the abuse of psycho-stimulants (amphetamine and ecstasy being the most abused), although still under the European data, is continuously increasing, especially in the teen-agers. The expansion of the cannabis abuse (well above the European average data) and the strong increase of the multiple-substances abuse, being alcohol involved in more than 90% of cases, both with cannabis and with cocaine and psycho-stimulants, are the heaviest data to be noted in the annual report.

The data we are presenting have been extrapolated by a working group of the “Osservatorio Epidemiologico sulle Dipendenze della Regione Emilia Romagna” (Regional Epidemiologic Observatory on Drugs). The work was based on a research project involving some EDs of the Region Emilia Romagna. The data presented are referred to EDs of Parma and Fidenza (Parma Province, years 2007-2008).

We describe the epidemiological patterns of abuse in Parma Province, showing the data of a large urban ED (Parma) and of a medium suburban ED (Fidenza); obviously, our data are limited to the intoxications that lead people to the ED, both for toxicity symptoms and for trauma. The Parma ED registered, in the year 2008, a 8.3% increase of the visits due to substance abuse, compared with the year 2007; the Fidenza ED registered a 44% increase in the same period. We must consider the possibility of an overestimation of the Fidenza data, due to imperfect data collection; nevertheless the strong trend must be noted, considering that Fidenza ED is not a metropolitan area ED. According with our feeling, in both the EDs we can show a strong increase of cocaine abuse, and a slightly inferior, although worrisome, 40% increase of non-identified substances abuse.

We are still not fully prepared to the management of multiple or non-identified substances abuse, and we need specific clinical pathways, involving toxicologic consultation and prompt availability of tox-lab.

Intossicazioni da sostanze d’abuso nei dipartimenti di emergenza della provincia di Torino

R. Pavese
Divisione di Medicina Interna, Ospedale Maggiore di Chieri, ASLTO5

La raccolta dei dati relativi alle intossicazioni nel nostro DEA (Dipartimento di Emergenza e Accettazione) è resa piuttosto difficoltosa in parte dalla scarsa accuratezza della codifica della diagnosi da parte del medico, in parte dalla scarsa elasticità del sistema informatico in uso, in parte dal diverso senso di pertinenza delle intossicazioni condotto dal nostro gruppo (ospedale Giovanni Bosco di Torino, 2003) aveva dimostrato l’insufficiente correlazione tra i dati raccolti dal sistema informatico e quelli rilevati in modo sistematico sul materiale cartaceo (metodologia però estremamente dispendiosa in termini di tempo e di risorse umane). Agevolati dalla circostanza che nel nostro DEA i pazienti con intossicazione vengono valutati in massima parte in prima battuta dai colleghi Rianimatori (ad eccezione delle intossicazioni etiliche) abbiamo analizzato il 36.579 passaggi totali nel nostro PS (Pronto Soccorso) del 2009 tutti i pazienti valutati dal collega Rianimatori, e tra questi i 75 risultati affetti da intossicazione.

I dati raccolti non sono in linea con quelli del precedente censimento del 2003 (1% di intossicazioni sul totale dei passaggi in DEA, di cui la metà circa da abuso etilico, contro lo 0.2% del presente studio). Questo fatto può trovare spiegazioni diverse:

- il diverso strumento utilizzato: raccolta su materiale informatico “mirata” (ma probabilmente non abbastanza sensibile) versus censimento sistematico, cartella per cartella, sul materiale cartaceo presente in archivio
- la diversa area geografica (prima cintura di Torino con popolazione a ceto medio-alto versus quartieri popolari urbani a forte componente immigratoria) dei due studi
- la mancata raccolta di dati relativi ad intossicazioni etiliche nel nostro studio sulle quali, come si è detto, lo strumento informatico non è in grado di fornire dati attendibili.

In conclusione la sensazione è che nella nostra area geografica le intossicazioni da sostanze d’abuso siano un problema meno rilevante che in realtà più urbanizzate, ma per avere una significatività anche statistica del dato sarà necessario implementare uno studio prospettico, con coinvolgimento di tutti i colleghi operatori in DEA, ed eventuale adeguamento del sistema informatico tale da renderlo idoneo a rilevazioni ad hoc.
Intossicazioni acute da sostanze d’abuso: esperienza del polo tossicologico ospedaliero di Firenze

F Gambassi, M. Lotti, C. Lanzi, V. Galli, A. Ieri, A. Missanelli, P. Botti

SOD Tossicologia Medica – SODs Centro Antiveleni, Dipartimento Emergenza e Accoglienza, Azienda Ospedaliero Universitaria Careggi, Firenze

Le SOD di Tossicologia Medica e Centro Antiveleni della AOU Careggi di Firenze si occupano della gestione clinica delle intossicazioni acute e croniche non professionali, rappresentando il riferimento tossicologico per la zona Nord-Ovest della città e per alcuni comuni limitrofi (230.000 residenti). Da Gennaio 2006 ad Agosto 2010 la SOD di Tossicologia Medica ha trattato 6963 pazienti (media 1525 annui), di cui 5876 (84% sul totale, 1259 annui) ammessi in regime di urgenza per intossicazione acuta da xenobiotici. Circa il 60% (3474) degli accessi acuti è stato determinato da abuso di sostanze (alcol, oppiodi, cocaina, psicostimolanti, allucinogeni), con un tasso pari a 324/100.000 residenti.

Nell’ambito delle intossicazioni acute da sostanze di abuso la vera “emergenza epidemiologica” è rappresentata dai casi di etilismo (3206; 91% del totale), con un trend in costante aumento rispetto agli anni precedenti. Il numero di pazienti trattati corrisponde ad un tasso di accessi pari a circa 300/100.000 residenti, che ha comportato significativamente il decorso clinico dei pazienti che hanno complicato significativamente il decorso clinico dei pazienti.

La diagnosi è spesso complessa e presenta talvolta alterazioni dello stato di coscienza sia in senso neuroeccitatorio (euforia, disforia, agitazione psicomotrice), che in senso neurodepessivo (sopore, coma). Relativamente al periodo compreso fra Gennaio 2009 e Agosto 2010 nel 16.5% dei pazienti ricoverati è stato riscontrato un punteggio GCS inferiore a 15, ed inferiore a 8 nel 4.3%; inoltre, in tutto il quinquennio preso in esame, nel 9.3% dei casi si sono verificate emergenze cliniche rilevanti che hanno complicato significativamente il decorso clinico dei pazienti.

Il percorso del paziente con intossicazione acuta da sostanze d’abuso: dalla diagnosi alla dimissione (tavola rotonda)

C. Locatelli1, I. Casagranda2, P. Papa3, C. Fraticelli4, P. Danesino5

1 Centro Nazionale di Informazione Tossicologica - Centro Antiveleni di Pavia, Servizio di Tossicologia, IRCCS Fondazione Maugeri e Università degli Studi, Pavia
2 Dipartimento Emergenza e Accettazione, Azienda Sanitaria Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria
3 Laboratorio di Tossicologia Clinica Analitica, Servizio di Analisi Chimico Cliniche, Fondazione IRCCS Policlinico San Matteo, Pavia
4 Unità Operativa di Psichiatria 8 - Azienda Ospedaliera Sant’Anna, Como
5 Dipartimento di Medicina Legale e Sanità Pubblica, Università degli Studi, Pavia

La tipologia delle intossicazioni acute da abuso di sostanze osservata nei servizi d’urgenza si è modificata negli anni ultimi anche in Italia, ed è esperienza ormai comune assistere a un aumento di accessi correlati all’uso di droghe eccitanti e allucinogene - anche le cosiddette “smart drugs” - comprendenti cannabinoidi e catinoni sintetici, benziliperazin, ketamina, GHB e analoghi, dimetiltiriptamina, salvinorina, psilocibina, mescalina, stramoni, e altri ancora. La diagnosi è spesso complessa e presenta talvolta aspetti delicati (es. fasce di età molto basse, violenze sessuali).

Gli aspetti gestionali che più connotano l’accesso al sistema sanitario dell’urgenza (servizi psichiatrici compresi) conseguenti a tali situazioni di abuso e di consumo (primo fra tutti il “poli-abuso”) sono:

- la reale incidenza di intossicazioni acute da queste sostanze non è nota, i pazienti non hanno in genere una storia di abuso alle spalle, e l’abituale co-assunzione di alcol facilita diagnosi incomplete ed errate
- gli effetti tossici sui vari sistemi e apparati conseguenti ad assunzione di molte delle sostanze eccitanti/allucinogene oggi circolanti non sono ancora ben caratterizzati per tipologia, gravità e durata nel tempo
- gli effetti acuti e post-acuti delle droghe eccitanti e allucinogene, delle smart-drugs e del poliabuso sono ancora poco noti ai diversi specialisti che operano nel sistema dell’urgenza
- la diagnosi specifica è complessa e può necessitare di più valutazioni specialistiche

Materiale protetto da copyright. Non fotocopiare o distribuire elettronicamente senza l’autorizzazione scritta dell’editore.
Il ruolo dello psichiatra nelle situazioni di intossicazione acuta da sostanze d’abuso

C. Fraticelli
Dipartimento Salute Mentale, Azienda Ospedaliera Sant’Anna, Como

La condizione di intossicazione acuta da sostanze d’abuso è sovente caratterizzata dalla presenza di significative alterazioni comportamentali, disturbi cognitivi e altri sintomi psichiatrici (alterazioni dispercettive, idetiche e dell’affettività) che richiamano l’intervento specialistico accanto a quello del medico dell’emergenza. Di fronte ad un paziente agitato che giunge all’osservazione si ritiene che sia opportuno e necessario un miglioramento non solo degli aspetti diagnostico-terapeutici di queste intossicazioni, ma anche degli aspetti gestionali e organizzativi del sistema dell’urgenza.

Allo stato attuale delle conoscenze e sulla base del modello organizzativo del sistema dell’urgenza italiano coinvolto in questa problematica di salute pubblica (118, servizi di pronto soccorso, DEA, laboratori e servizi psichiatrici di diagnosi e cura) si ritiene che sia opportuno e necessario un miglioramento non solo degli aspetti diagnostico-terapeutici di queste intossicazioni, ma anche degli aspetti gestionali e organizzativi del sistema dell’urgenza.

Alcuni punti sui quali vi è convergenza di opinioni sono:

1. sono auspicabili, o meglio necessari, strumenti diagnostici più in linea con le attuali esigenze, in grado di facilitare la diagnosi delle attuali tipologie di abuso;
2. i pazienti che accusano effetti tossici aggiuntivi a quelli inquadrabili nella sfera psichiatrica (quali effetti cardiotossici, di danno d’organo, o di shiblanco omeostatico) devono essere inquadrati come intossicati acuti a rischio di potenziali complicanze e dovrebbero essere osservati in reparti medici o intensivisti (secondo gravità) ove sia possibile un attenso monitoraggio strumentale e clinico, fino a completa risoluzione del quadro extra-psichiatrico;
3. la gestione in reparto psichiatrico dovrebbe essere limitata ai pazienti per i quali si escludono effetti tossici a carico di altri organi e sistemi e/o la presenza di sostanze con effetti (e tempi di comparsa degli effetti) poco noti;
4. l’apporto consulenziale dello specialista psichiatra e comunque essenziale sia per la diagnosi differenziale fra le forme di patologia psichiatrica di origine organica e quelle da sostanze esogene, sia per la scelta del trattamento più indicato;
5. l’apporto consulenziale dello specialista tossicologo del Centro Antiveleni è importante e raccomandato per la diagnosi e i trattamenti tossicologici, per la valutazione delle necessità analitiche in urgenza, per la scelta più appropriata collocazione del paziente in acuto e quale riferimento specialistico per la fase post-acuta non psichiatrica;
6. la dimissione troppo precoce e senza sufficienti accertamenti (es. sulla base di un “triage analitico su urine” negativo per le sostanze d’abuso più comuni) esponendo a rischio di mancato riconoscimento di patologie anche gravi;
7. occorre stabilire procedure ad hoc per il consenso del paziente alla diagnosi e al trattamento, nonché per prevenire problemi nei casi, ad esempio, di pazienti che si allontanano dalle strutture sanitarie in condizione di intossicazione non ancora definitivamente diagnosticata e subiscono o commettono reati;
8. l’implementazione di sistemi nazionali per la valutazione delle nuove tipologie di abuso e consumi è necessaria ed strategica per la precoce rilevazione di problematiche emergenti e per le opportune misure di prevenzione.